

Technical Reference Manuals (TRMs)

- TRMs provide information used for planning and evaluating the energy and demand savings associated with ratepayer funded energy-efficiency measures.
- Not always called TRMs. For example:
 - Regional Technical Forum (RTF) in Northwest
 - Program Savings Document (PSD) in CT
 - Michigan Energy Measures Database (MEMD) in MI

Illinois Statewide Technical Reference Manual - Volume 2: Commercial and Industrial Measures

Volume 2: Commercial and Industrial

Step 3*: Select Year, Type of Savings and Region

region measures are installed (default is Average)

Air curtain for overhead doors, ft^2 of Doorway Area Air infiltration / sealing and pressurization, Custom

Demand control building ventilation, ft^2 of Conditioned Sp

Demand control kitchen ventilation. Horsepower of Exhaust

Evaporator fan control for motors, Horsepower of Motor

High-efficiency electric air cooled chiller. Ton of Chiller

High-efficiency motor for walk/reach-in freezers, Motor

High-efficiency motor for walk/reach-in refrigerators. Motor

High-efficiency natural gas boiler, kBTU/hour of Heating

High-efficiency natural gas furnace, kBTU/hour of Heating

High-efficiency natural gas make-up air furnace. CFM of Ven.

High-efficiency natural gas storage water heater, Water Hea

High-efficiency natural gas unit heater, kBTU/hour of Heatir

High-efficiency unitary air conditioner, Ton of Cooling

High-efficiency heat pump, kBTU/hour of Heating and Coolir

Automatic door for walk-in freezer. Door

Bay fixture and retrofit kit, Fixture

Commercial insulation, Custom

Drain water heat recovery, Drain

Automatic door for walk-in refrigerator, Door

Building automation system upgrade, Custom

Destratification fan, ft^2 of Conditioned Space

Downlight fixture and retrofit kit, Fixture

General service and specialty lamp, Lamp

High-efficiency door for reach-in freezer, Door

High-efficiency door for reach-in refrigerator, Door

Program settings, such as program year when measures

will be installed, type of savings to calculate and which Type of Savings

Step 4: View Measure Details (Enable Content/Macros to Auto-Refresh)

Measure Life Lifetime Electr Savings (kWh

0.0

0.0

18,456.0

7,544.0

2,424.1

0.0

0.0

5.8

74.490.0

0.0

135.7

0.0

44,772.0

955.7

39.660.0

10,080.0 1,410.6

32,413.2

3,394.3 3,570.2

0.0

0.0

-1.3

0.0

0.0 0.0

281.5

(vrs)

15

15

EEA TRM v1

Dashboard

Step 1: Select Sector

Step 2: Select Measure Type

Commercial Kitchen - Control

Commerical Kitchen - Control

Residential

Measure Type

HVAC - Control

HVAC - Cooling

HVAC - Heating

Lighting - Control

Lighting - Indoor fixture

Lighting - Indoor lamp

Lighting - Specialty

Refrigeration - Control

Refrigeration - Lighting

Refrigeration - Motor

Water - Heating

Refrigeration - Door

Motors and drives

Lighting - Outdoor fixture

Sector Commercial

High-efficiency pre-rinse spray valve. Valve.

Technical Reference Manuals (TRMs)

TRM information may include:

Eligibility

- Customer type

 (e.g., residential,
 low-income, small
 business)
- Project conditions (e.g., new construction, time of failure, retrofit)
- Product criteria

Default Conditions

- Definition of baseline and efficient conditions
- Assumptions such as hours, horsepower, and peak coincidence

Energy Savings

- Deemed energy and demand savings values
- Engineering algorithms
- Load shapes

Cost-effectiveness Inputs

- Incremental measure cost
- Measure life
- Non-energy impacts (e.g., water savings)

Supporting Documentation

- References to studies and other TRMs
- Citations
- Rationale

Illinois Statewide Technical Reference Manual — 4.5.10 Lighting Controls

4.5.10 Lighting Controls

DESCRIPTION

This measure relates to the installation of new occupancy or daylighting sensors and con lighting system. Lighting control types covered by this measure include wall, ceiling, fixtu controls in addition to Luminaire Level Lighting Controls (LLLCs) or Networked Lighting C additional high-end trim and networking capabilities. Passive infrared, ultrasonic detect sensors or sensors with a combination thereof are eligible. Lighting controls required by s eligible. This must be a new installation with additional control features and may not sole existing lighting control with the same control features.

This measure was developed to be applicable to the following program types: RF.

If applied to other program types, the measure savings should be verified.

DEFINITION OF EFFICIENT EQUIPMENT

Lighting that is controlled by any of the control strategies characterized in this measure; dual (occupancy and daylighting) controls with or without high-end trim, and Luminaire-lev / Networked Lighting Controls (NLC).

LLLCs or NLCs are defined according to DesignLights Consortium (DLC) Networked Lighting Controls definition, which requires systems to have fixture networking capabilities, individual addressability, occupancy sensing, daylight

harvesting, hig rk abilitv

Lighting Control Type	Incremental Cost ¹²⁹⁵
Interior Wall Switch Occupancy Sensor	\$55.00
Interior Fixture-Mounted Occupancy Sensor	\$67.00
Interior Remote or Wall-Mounted Occupancy Sensor	\$125.00
Interior Fixture-Mounted Daylight Sensor	\$50.00
Interior Remote or Wall-Mounted Daylight Sensor	\$65.00
Interior Integrated Occupancy for LED Interior Fixtures < 10,000 Lumens	\$40.00
Interior Integrated Occupancy for LED Interior Fixtures >= 10,000 Lumens	\$40.00
Interior Integrated Dual Occupancy & Daylight Sensor for LED Interior Fixtures < 10,000 Lumens	\$50.00

Algorithm

CALCULATION OF SAVINGS

ELECTRIC ENERGY SAVINGS

Wattser

Hours

WHFe

ΔkWh = ((Watts_{base}-Watts_{EE})/1000) * Hours * WHF_e* ISR

Where:

= Input wattage of the existing system which depends on the baseline fixture Wattsbase

configuration (number and type of lamp) and ballast factor (if applicable) and number of

fixtures.

= Actual

= New Input wattage of EE fixture which depends on new fixture configuration (number

of lamps) and ballast factor (if applicable) (if applicable) and number of fixtures.

= Actual

= Average hours of use per year as provided by the customer or selected from the Reference Table in Section 4.5, Fixture annual operating hours, by building type. If hours

or building type are unknown, use the Miscellaneous value.

Lighting Control Type	Energy Savings Factor 1299			
Fixture Measurement of Control savings through	Custom			
Networked Trending (Interior or Exterior)	Custom			
Interior Occupancy Sensor (Switch, Wall, Fixture	24%			
h or Remote Mounted or Integrated in Fixture)	37% with High End Trim			
Interior Occupancy Sensor configured as	31%			
"Vacancy Sensor" (Switch, Wall, Fixture or	44% with High End Trim			
Remote Mounted or Integrated in Fixture)	44% With High End Thin			
Interior Daylight Sensor (Wall, Fixture or Remote	28% 41% with High End Trim			
Mounted)				
Interior Dual Occupancy & Daylight Sensor	38%			
(Integrated of Fixture Mounted)	51% with High End Trim ¹³⁰⁰			
Interior Networked Luminaire-Level Lighting	61% ¹³⁰¹			
Controls	0176			
Interior Networked Lighting Controls Only with	35%			
No LLLCs	3370			
Interior Networked Lighting Controls (unknown	49%			
or mixed LLLCs)	4370			

TRM Jurisdictional Scan

- Availability and use of TRMs
- Presence of NLC/LLLC measures within TRMs
- Lighting control measure assumptions within TRMs
 - Control savings factor/fraction (CSF)
 - Operating hours
 - Measure life

Jurisdictional Scan Results

Country	Region	States/ Provinces	TRMs Found	TRMs Not Found	NLC Measures	% with NLC	LLLC Measures	% with	Room- based Measures	% with Room- based
U.S.	Mid-Atlantic	6	6	0	5	83%	1	17%	1	17%
U.S.	Midwest (Lakes)	6	6	0	5	83%	3	50%	2	33%
U.S.	Midwest (Plains)	6	2	4	1	50%	1	50%	1	50%
U.S.	New England	6	6	0	2	33%	2	33%	2	33%
U.S.	Northwest	6	4	2	4	100%	4	100%	0	0%
U.S.	South	7	4	3	1	25%	0	0%	0	0%
U.S.	Southeast	7	1	6	0	0%	0	0%	0	0%
U.S.	West	7	4	3	1	25%	0	0%	0	0%
U.S.	Subtotal	51	33	18	19	58%	11	33%	6	18%
Canada	Atlantic	4	1	3	0	0%	0	0%	0	0%
Canada	Central	3	1	2	1	100%	0	0%	0	0%
Canada	West	3	1	2	0	0%	0	0%	0	0%
Canada	Subtotal	10	3	7	1	33%	0	0%	0	0%
G	rand Total	61	36	25	20	56 %	11	31%	6	17%

NLC Prevalence by Region

- Strong prevalence in Mid-Atlantic, Midwest, and Northwest
- Gaps exist in New England (only 33% have NLC), South, Southeast, West, and Canada

Control Savings Factor (CSF)

- CSF defines the %
 savings off the
 controlled load, due
 to the use of controls
- Some TRMs also define a baseline CSF, such as the preexisting use of occupancy sensors

Operating Hours (for "Office" space type)

- Operating hours are defined by space type for use across all lighting measures
- One TRM (Illinois)
 defines longer
 operating hours for
 NLC measures, based
 on the DLC/NEEA
 study

Measure Life

- Measure life is used in cost-effectiveness screening, calculation of lifetime savings, and IRP modeling.
- TRM measure life ≠ functional life
- LLLC measures are more often tied the (longer) measure life to the fixture

