

Bringing Efficiency to Light[™]

V3.0 Networked Lighting Controls Technical Requirement Release

June 21, 2018

Agenda

- **1. Introduction**
- 2. Energy Monitoring
- **3. New Documentation Requirements**
- 4. Product Families
- 5. DC/PoE
- 6. Cybersecurity
- 7. Stakeholder Meeting

Table 1

Interior Lighting Systems

'Required' Interior System Capabilities

 Networking of Luminaires and Devices

 Occupancy Sensing
 Daylight Harvesting / Photocell Control
 Uich, End Trime

•High-End Trim

•Zoning

•Luminaire and Device Addressability

•Continuous Dimming

'Reported' Interior System Capabilities

 Control Persistence Scheduling Energy Monitoring Device Monitoring / Remote Diagnostics Type of User Interface •Luminaire Level Lighting Control (LLLC, integrated) Personal Control Load Shedding (DR) •Plug Load Control •External Systems Integration (e.g. BMS, EMS, HVAC, Lighting, API) Emergency Lighting •Cybersecurity •Color Changing / Tuning •Start-Up and Configuration Party Scene Control

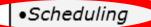


Table 2

Exterior Lighting Systems

'Required' Exterior System Capabilities

- •Networking of Luminaires and Devices
- •Occupancy Sensing AND/OR Traffic Sensing
- •Daylight Harvesting / Photocell Control
- •High-End Trim
- •Zoning
- •Luminaire and Device Addressability
- Continuous Dimming

'Reported' Exterior System Capabilities

Control Persistence
Energy Monitoring
Device Monitoring / Remote Diagnostics
Type of User Interface
Load Shedding (DR)
External Systems Integration (EMS/BMS/HVAC/Lighting/API)
Emergency Lighting
Cybersecurity
Color Changing / Tuning
Start-Up and Configuration Party
Scene Control

Table 3: Capability and Requirement Definitions

Row	Capability	Definition
1	Networking of Luminaires and Devices	The capability of individual luminaires and control devices to exchange digital data with other luminaires and control devices on the system. This capability is required at the room, space, or area level, but not at the whole building level or beyond (e.g. non-lighting systems, or the internet).
2	Occupancy Sensing	The capability to affect the operation of lighting equipment based upon detecting the presence or absence of people in a space or exterior environment.
		Exterior systems must include either Occupancy Sensing or Traffic Sensing. They may include both, but that is not required.

	I	I			
		-	 		
23					
25					

. . .

V3.0 available on www.designlights.org

Download the QPL

Qualify a System

System Definitions

System Technical Requirements V3.0

Download as PDF

Networked Controls Revision Cycle

Technical Requirement Revised Annually every June 1

Revision process begins every January to allow time for stakeholder input

One Year Grace Period:

re-apply under last year's version.

NLC V3.0 – Networked Lighting Controls

Energy Monitoring

Energy Monitoring Multi-Year Plan

June 2018 V3

 The Energy Monitoring type is **Reported**, whether "Direct Measurement", or "Calculated".

June 2019 V4

- Energy Monitoring Capability is **Required**
- Manufacturers will self-report accuracy of direct measurement methods.

June 2020 V5

 Calculated methods no longer accepted unless supported by new ANSI standard that specifies the accuracy of the methodology

New Documentation Requirements

Customer Available Information

"In order for an applicant to claim a capability listed in Tables 1 and 2, the manufacturer's customer literature must specify that the system has the capability, with instructions for how to configure and/or use this feature.

"Customer available" means the documentation is a finished product available publicly on a website, and/or included with the product packaging, and/or provided to the customer upon request. It should not be a document produced for the sole purpose of obtaining DLC qualification without further use for customers. The DLC reserves the right to accept, reject, or require changes to documentation to satisfy this requirement. Any documentation provided to the DLC will be used for the purpose of verifying compliance with DLC Technical Requirements and will not be made available publicly or distributed."

Customer Available Information & Exceptions

16 topics, not 500

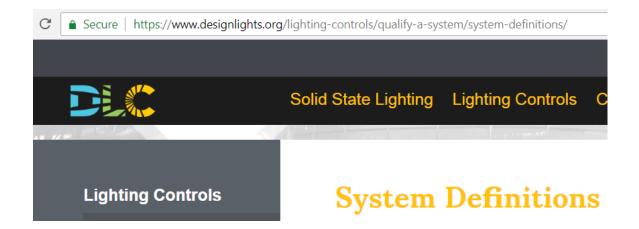
Required Interior Capabilities

Networking of Luminaires & Devices

Occupancy Sensing Daylight Harvesting/Photocell Control High-End Trim

Zoning

Luminaire and Device Addressability


Continuous Dimming

Reported Interior Capabilities

Control Persistence Scheduling Energy Monitoring Device Monitoring / Remote Diagnostics Type of User Interface Luminaire Level Lighting Control (LLLC, integrated) Personal Control Load Shedding (DR) Plug Load Control External Systems Integration (e.g. BMS, EMS, HVAC, Lighting, API) Emergency Lighting Cybersecurity Color Changing / Tuning Start-Up and Configuration Party Scene Control

Product Families

Family of Related Systems

The DLC offers reduced fee amounts for family member systems. Family member systems are child or derivative systems of a parent system that may offer small differences in feature sets and/or characteristics, but are otherwise identical to the parent system. For example, they may have a reduced or simplified feature set for less complex applications, or feature sets that are configured for a specific vertical or application, such as an exterior child of a parent interior system. In these cases, the parent system would typically be the most fully-featured system. Manufacturers interested in preparing a family set of applications must contact **info@designlights.org** to confirm a plan before completing the applications.

2		Applications Received	Single Interior or Exterior System	Family Member / Child System	Private Label System
	Lighting Controls	June 1, 2018 – August 31, 2018	\$15,000	\$8,000	\$5,000
	Qualify a SystemSeptem NovemSystem DefinitionsDecem FebruarTechnical RequirementsDecem FebruarApplication InstructionsTechnical	September 1, 2018 – November 30, 2018	\$12,000	\$7,000	\$5,000
		December 1, 2018 – February 28, 2019	\$9,000	\$6,000	\$5,000
»		March 1, 2019 – May 31, 2019	\$6,000	\$5,000	\$5,000

DC / POE

Topic: DC/PoE

Next Steps

- DLC will accept SSL applications beginning in September 2018
- DLC will accept and begin processing Control applications beginning in June 2018
- To avoid confusion with rebate/incentive programs, DLC will not publicly qualify and list DC/PoE Control Systems until the corresponding SSL application process is available in September.

Cybersecurity

Cybersecurity: Multi-Year Plan

June 2018 V3

- Cybersecurity is reported for components that comply with ANSI UL 2900 or IEC 62443
- Manufacturers may also report compliance with ISO 27000 and and/or NIST IoT Cybersecurity Framework

June 2019 V4

 DLC will propose how components, systems, and/or manufacturers must be certified, and to which standard(s), in order to claim this optional capability

June 2020 V5

• Cybersecurity compliance as outlined from V4 will be required

ANSI UL 2900

Cybersecurity for Network-Connectable Products

Design methods

Building blocks

- Open source software
- Integrated circuit hardware and firmware
- Known vulnerabilities of each block

Try to hack, see what happens

Test each networked component SKU (not the system as a whole)

https://industries.ul.com/cybersecurity/ul-2900-standards-process

ANSI UL 2900 Standards Process

Cybersecurity for Network-Connectable Products

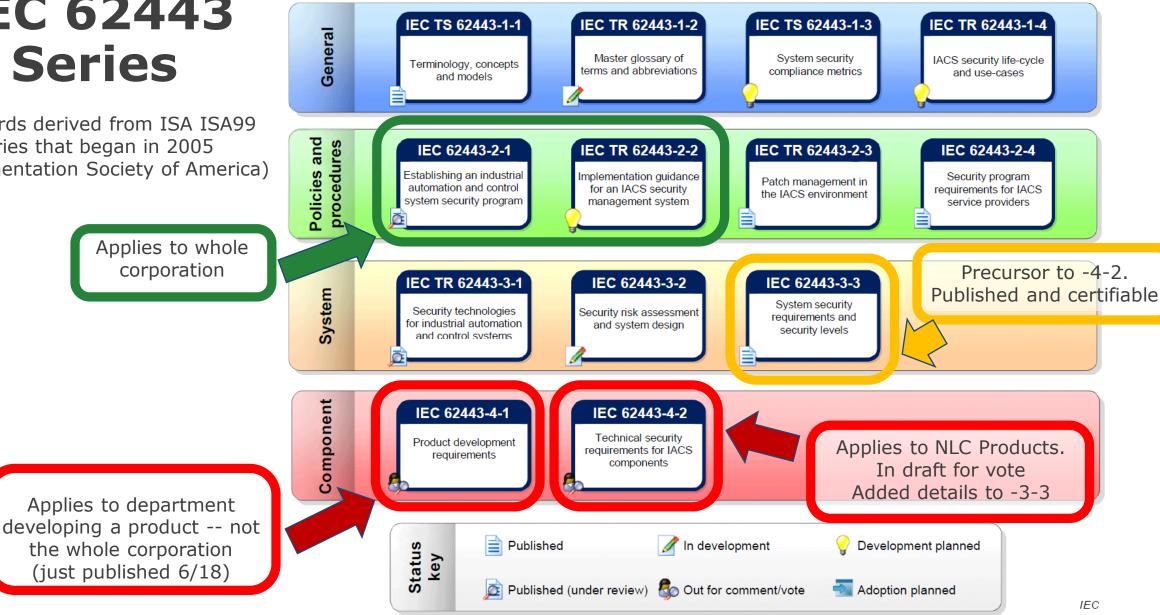
UL 2900-1:2017 applies to networkconnectable products that shall be evaluated and tested for vulnerabilities, software weaknesses and malware.

Introductory Webinar recording about lighting

https://industries.ul.com/events/lighting-systems-and-cybersecurity-are-your-systems-ready

Some industry-specific versions available

- UL 2900-2-1: Healthcare systems
- UL 2900-2-2: Industrial control systems
- UL 2900-2-3: Security and life safety signaling systems such as Automated Teller Machines, Fire Alarm Control...



https://industries.ul.com/cybersecurity/ul-2900-standards-process

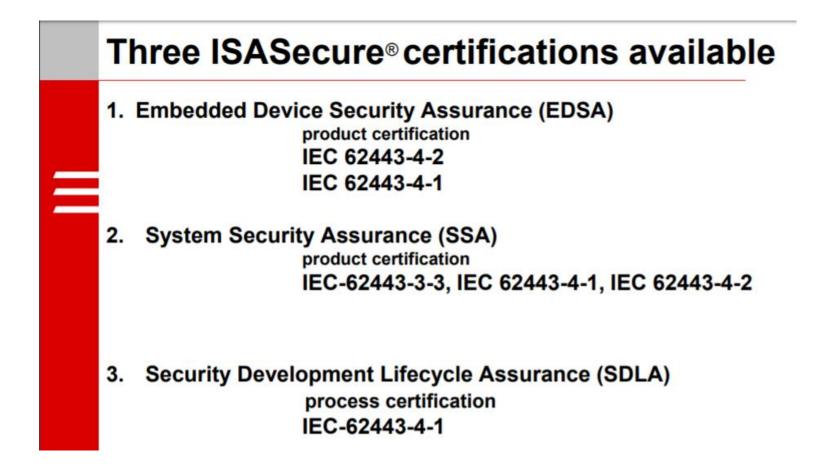
IEC 62443 Series

Standards derived from ISA ISA99 series that began in 2005 (Instrumentation Society of America)

IEC 62443 Lab Tests

International Electrotechnical Commission

IEC.ch


Through ISASecure.org

Through IECEE.org

From report "ISA/IEC 62443 STANDARDS AND ISASECURE® CERTIFICATION: APPLICABILITY TO BUILDING CONTROL SYSTEMS", 16 JANUARY 2017

http://www.isasecure.org/en-US/Building-Control-Systems-Report

IEC 62443: 4 security assurance levels

Security Level	Target	Skills	Motivation	Means	Resources
SL1	Casual or coincidental violations	No Attack Skills	Mistakes	Non- intentional	Individual
SL2	Cybercrime, Hacker	Generic	Low	Simple	Low (Isolated Individual)
SL3	Hacktivist, Terrorist	ICS Specific	Moderate	Sophisticated (Attack)	Moderate (Hacker Group)
SL4	Nation State	ICS Specific	High	Sophisticated (Campaign)	Extended (Multi- disciplinary Teams)

"Practical Overview of Implementing IEC 62443 Security Levels in Industrial Control Applications" 5/2018

https://www.schneider-electric.com/en/download/document/998-20186845/

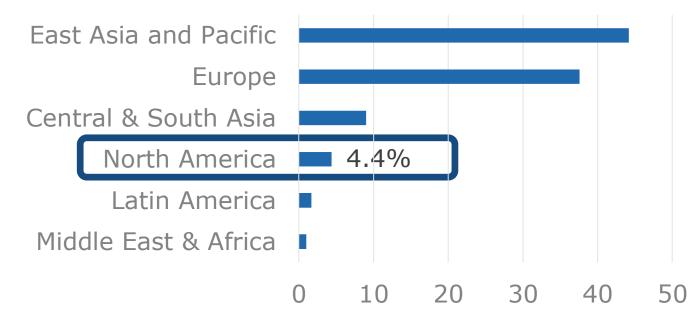
ISO/IEC 27000 family – Information security management systems

The ISO/IEC 27000 family of standards helps organizations keep information assets secure...

ISO/IEC 27001 is the best-known standard in the family...

https://www.iso.org/isoiec-27001-information-security.html

International Organization for Standardization When the world agrees



ISO/IEC 27001

Certificates in 2016				
Canada	133			
USA	1,115			
Total World	33,310			

Certificates in 2016, Regional Share %

NEMA Cyber Best Practices

- Hygiene: NEMA White Paper CPSP 2-2018
- Supply Chain: NEMA Guideline CPSP 1-2015

C

Q☆ 0 🖸 0 🔘

PROJECTS/PROGRAMS

NIST Cybersecurity for IoT Program

DESCRIPTION Announcements Register for NIST's public workshop "Considerations for Managing IoT Cybersecurity and Privacy Risks Workshop" on July 11th in Gaithersburg, MD! Register Registe

Video

ORGANIZATIONS

Information Technology Laboratory Applied Cybersecurity Division

CONTACT

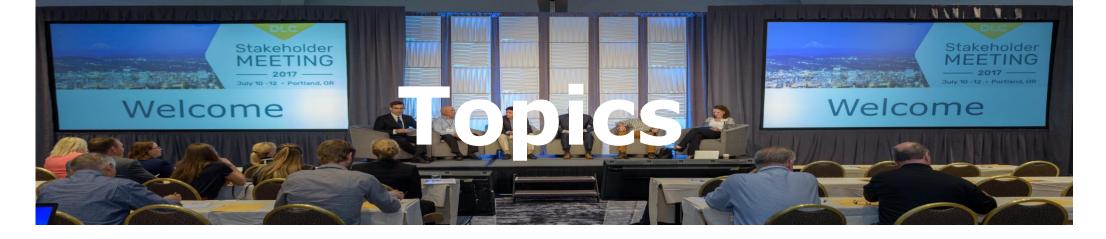
Katerina Megas^{III}, Program Manager Information Technology Laboratory Applied Cybersecurity Division Trusted Identities Group

Jim St. Pierre[™], Deputy Director Information Technology Laboratory

DATES

Started: November, 2016

Stakeholder Meeting


STAKEHOLDER MEETING 2018

July 9 - 11 • Boston, MA

Visit the DLC's Hometown!

	Day	Agenda
Monday	Day 1 – morning	In-person Member meeting
	Day 1 – afternoon	Pre-conference workshops & DLC Controls Training Opening Reception
Tuesday	Day 2	Full day conference Panels Breakout sessions Structured Networking Off-site Reception
Wednesday 34	Day 3	Full day conference Panels Discussion Sessions Breakout Sessions Structured Networking

Panels

- The Future of Lighting
- Outdoor Lighting: Filtering Facts from Fiction
- DLC V 5.0
- NLCs in Action: The Good, The Bad, and the Awesome
- Horticultural Lighting: The Root of New Industrial Infrastructure

Discussion Sessions

- SSL V5.0: Lighting Quality
- SSL V5.0: Lighting Controls
- Horticultural Lighting Requirements
- Component and Module Qualification

Pre-Conference Workshops

- Lighting for Health and Energy
 Energy Monitoring Savings
- Flicker
- TM33 Rethinking the Photometric Data File Format
- Cybersecurity / UL 2900 (Practicing/Testing/Approvals)

- IoT Ready Alliance new standard
- Controls Training*

Questions