

### Why Leave Savings on the Table? C&I Lighting Lifetime and Peak Demand Savings Analysis

November 18, 2019

#### **Presenters**









#### **Christina Halfpenny**

Executive Director DesignLights Consortium **Dan Mellinger**, PE LC Senior Consultant *Energy Futures Group* 



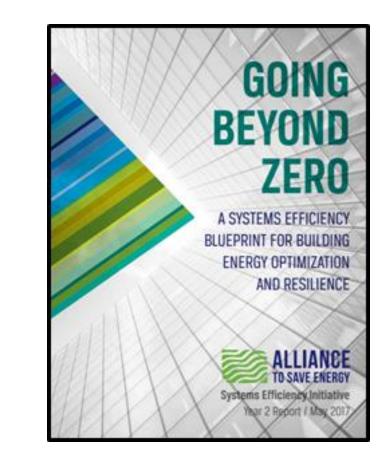
### Agenda

#### Introduction

**Rick Tempchin**, Alliance to Save Energy **Christina Halfpenny**, DesignLights Consortium

#### **Research Overview**

Dan Mellinger, Energy Futures Group


- Background Research
- Lifetime Savings Potential
- Peak Demand Savings
- Cost Effectiveness

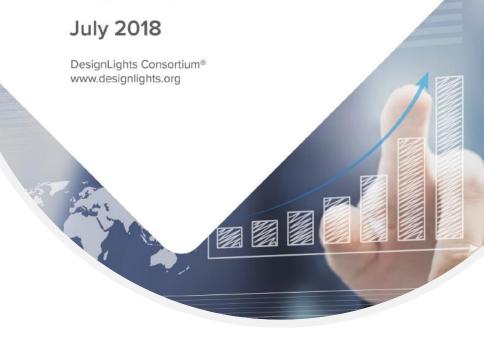
#### **Questions and Answers**



### Alliance to Save Energy: Systems Efficiency Resource Hub

- Repository of documents and tools to promote building systems efficiency
  - Promote implementation of Systems Efficiency Initiative (SEI) recommendations
- Focus on utility-led systems efficiency programs
  - Documenting successes and lessons learned from utility EE programs
  - Utility-ESCO consultations
    - Dec 2018 congressional briefing
    - Oct 2019 Utility-ESCO dialogue
  - Commercial & Industrial Lighting Lifetime and Peak Demand Savings Analysis

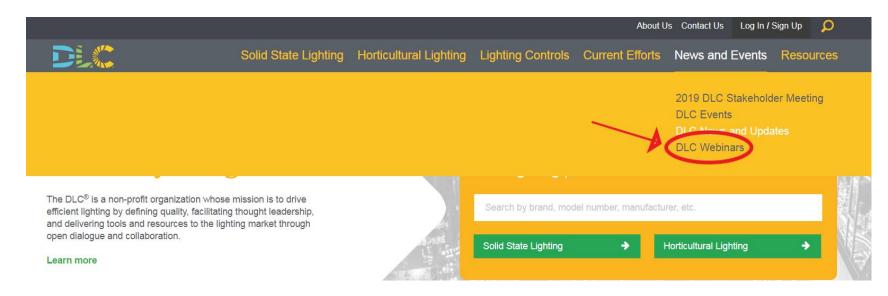





# **Networked Lighting**

- Added savings and value with NLC
- Risk of lost opportunity without networking
- A path exists to maintain C&I lighting portfolios at or above current levels until at least 2028




Energy Savings Potential of DLC Commercial Lighting and Networked Lighting Controls





### **Webinar Logistics**

- Recording will be posted on the DLC website following the webinar
- Please submit questions through the Question Pane during the webinar – Q+A will be held at the end



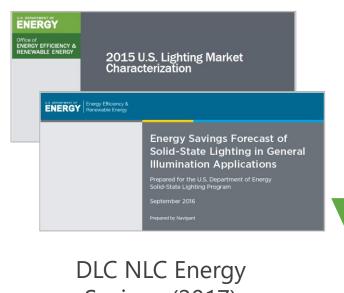


# **Research Overview**



### **Research Objectives**

Identify energy efficiency (EE) program measure assumptions for LED and NLC


Quantify the *lifetime* savings potential for C&I lighting product types

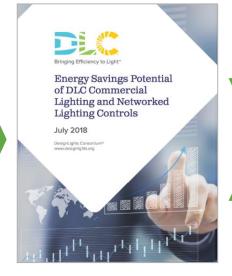
Determine the extent that C&I lighting technologies contribute to **peak demand savings** 

Evaluate the **cost-effectiveness implications** when considering lifetime savings for LED and NLC as a system

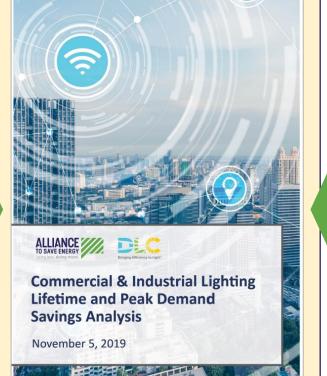


# DOE Market Characterization and SSL Forecast (2015-17)

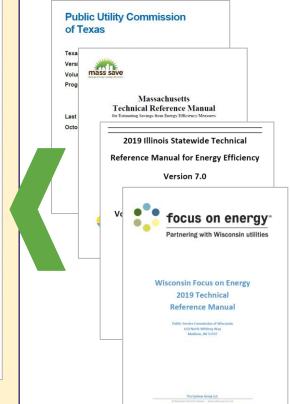





Energy Savings from Networked Lighting Control (NLC) Systems


September 21, 2017

Bringing Efficiency to Light"






ASE/DLC Lighting Lifetime and Peak Demand Savings Analysis (2019)



Technical Reference Manual Assumptions from 12 States





# **Technical Reference Manual (TRM) Research**

- Technical Reference Manuals are a document/database for common products and technologies
- Provides the algorithms and assumptions necessary to calculate energy savings and evaluate measure costeffectiveness

States/Jurisdictions Reviewed (12 total)

- <u>Northeast (3)</u> Massachusetts, Mid-Atlantic, Vermont
- <u>Midwest (4)</u> Illinois, Michigan, Minnesota, Wisconsin
- <u>South (3)</u> Arkansas, Texas, Tennessee
- <u>West (2)</u> California, New Mexico

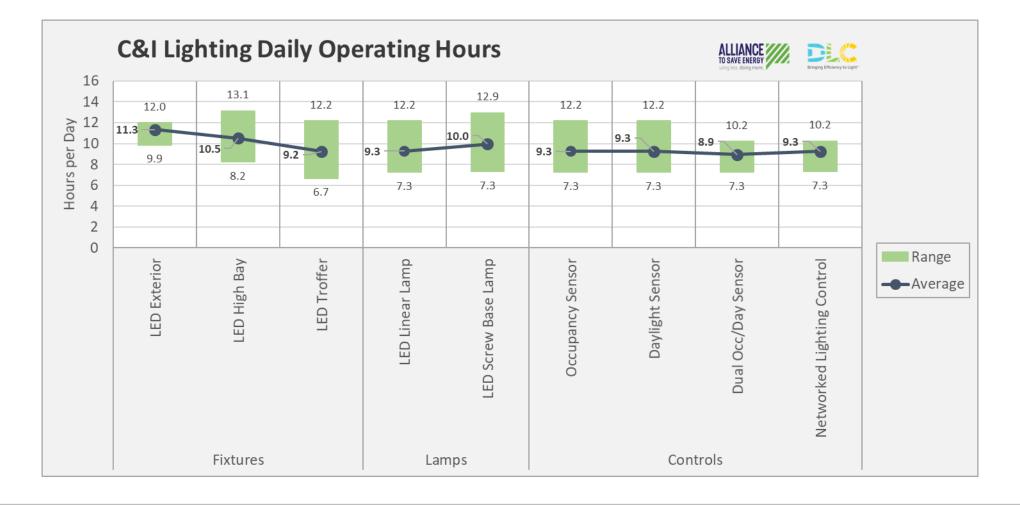
#### Measure Values Collected for ASE/DLC Research

- Effective Date
- Product Type and Measure Name
- Measure Lifetime (absolute and/or calculated)
- Operating Hours
- Control Savings Factor
- Summer Coincidence Factor
- Summer Peak Timeframe
- Measure cost (high and low)



### **TRM Lighting Measure Prevalence**

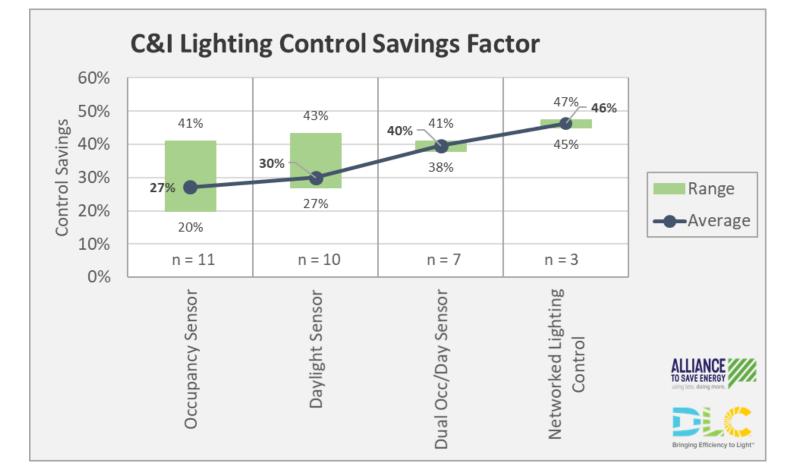
|                         |               |         | Fixtures        |                 |             | Lamps                 |               | Controls            |        |                           | $\bigcap$                        |
|-------------------------|---------------|---------|-----------------|-----------------|-------------|-----------------------|---------------|---------------------|--------|---------------------------|----------------------------------|
| Region                  | State         | Version | LED<br>Exterior | LED High<br>Bay | LED Troffer | I FD Linear           | <u> </u>      | Occupancy<br>Sensor |        | Dual<br>Occ/Day<br>Sensor | Networked<br>Lighting<br>Control |
| Northeast               | Massachusetts | 2019    | ✓               | ✓               | ✓           | ✓                     | ✓             | ✓                   | ✓      | ✓                         | ✓                                |
|                         | Mid-Atlantic  | 2018    | ✓               | ✓               | ✓           | ✓                     | ✓             | ✓                   | ✓      |                           |                                  |
|                         | Vermont       | 2017    | ✓               | ✓               | ✓           | ✓                     | ✓             | ✓                   | ✓      | ✓                         |                                  |
| Midwest                 | Illinois      | 2019    | ✓               | ✓               | ✓           | ✓                     | ✓             | ✓                   | ✓      | ✓                         |                                  |
|                         | Michigan      | 2019    | ✓               | ✓               | ✓           | ✓                     | ✓             | ✓                   | ✓      | ✓                         | ✓                                |
|                         | Minnesota     | 2019    | ✓               | ✓               | ✓           | ✓                     | ✓             | ✓                   | ✓      |                           |                                  |
|                         | Wisconsin     | 2019    | ✓               | ✓               | ✓           | ✓                     | ✓             | ✓                   | ✓      | ✓                         | ✓                                |
| South                   | Arkansas      | 2017    | ✓               | ✓               | ✓           | <ul> <li>✓</li> </ul> | ✓             | ✓                   | ✓      | ✓                         |                                  |
|                         | Tennessee     | 2017    |                 |                 |             | ✓                     | ✓             | ✓                   | ✓      | ✓                         |                                  |
|                         | Texas         | 2018    | ✓               | ✓               | ✓           | ✓                     | ✓             | ✓                   | ✓      |                           | ✓                                |
| West                    | California    | 2017    | ✓               | ✓               | ✓           | ✓                     | ✓             | ✓                   | ✓      | ✓                         |                                  |
|                         | New Mexico    | 2016    | ✓               |                 |             |                       | ✓             | ✓                   | ✓      |                           |                                  |
| Count of States         |               |         | 11              | 10              | 10          | 11                    | 12            | 12                  | 12     | 8                         | 4                                |
| % of States (out of 12) |               | .2)     | 92%             | 83%             | 83%         | 92%                   | <b>V 100%</b> | 100%                | 🕗 100% | 0 67%                     | 😮 33%                            |




### **TRM Lighting Measure Lifetime**






### **TRM Lighting Operating Hours**





# **TRM Lighting Control Savings Factor**

- A lighting control savings factor is used in TRMs to calculate savings
- Represents savings from reduced operating hours, reduced power, or both





### **TRM Research Findings**

### EE program TRMs are not keeping pace with lighting control technology

Networked lighting controls are absent in a majority of TRMs reviewed

All TRMs reviewed treat LEDs and NLCs as separate standalone measures

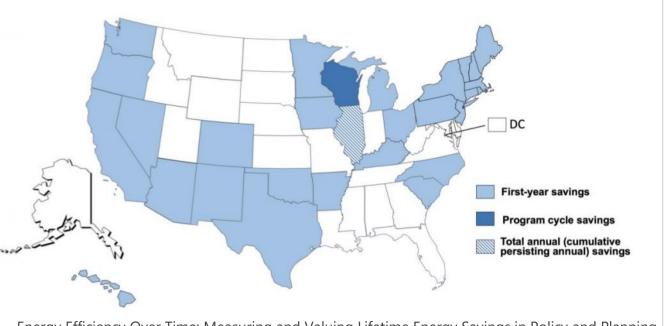
Lighting control measure lifetimes are notably lower than the associated LED lighting



# **Lifetime Savings Potential**



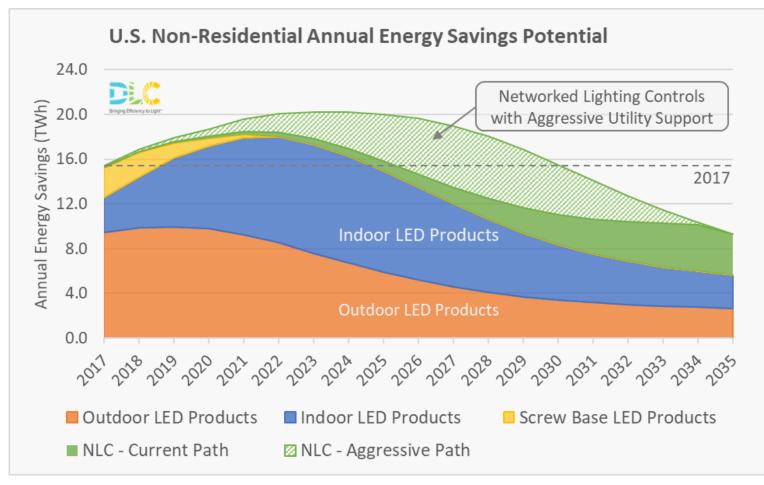
# **Annual vs. Lifetime Energy Savings**


| Annual (1 <sup>st</sup><br>Year) Savings                                                                | Lifetime<br>Savings                                                                      |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| The 12-month<br>savings total<br>expected by a<br>new measure in<br>the first year of<br>implementation | The sum of a<br>measure's<br>annual savings<br>over its<br>expected useful<br>life (EUL) |

- Most utility EE programs track progress in terms of annual (firstyear) energy savings
- An annual savings focus can inadvertently direct incentives toward measures with a lower lifetime benefit
- Lifetime savings more adequately represents the energy and economic potential of a measure



## Why do EE Programs Rely on First-Year Savings?


- Simplicity and historical precedence
- Existing state policies (EERS)
- Some states have increased their focus on lifetime savings through goals or performance incentives tied to lifetime benefits
  - California, Connecticut, Illinois, Michigan, Oregon, and Rhode Island



Energy Efficiency Over Time: Measuring and Valuing Lifetime Energy Savings in Policy and Planning <u>https://aceee.org/sites/default/files/publications/researchreports/u1902.pdf</u>



### **Prior DLC Research**



Energy Savings Potential of DLC Commercial Lighting and Networked Lighting Controls

- Published in 2018
- Estimated the savings potential in terms of *first-year* annual savings.

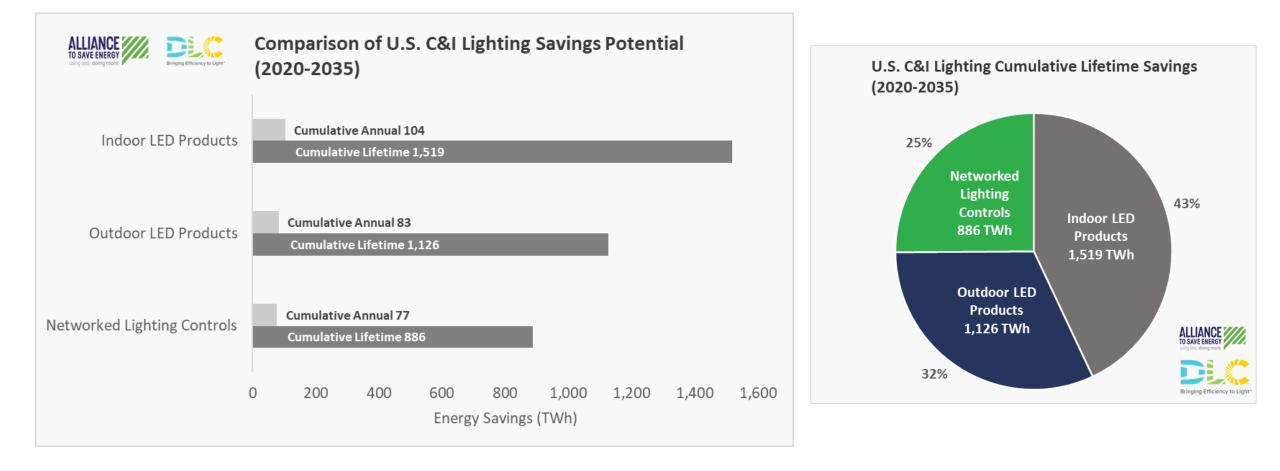
https://www.designlights.org/resources/energy-savings-potential-of-dlc-commercial-lighting-and-networked-lighting-controls/



## **Lifetime Savings Potential Analysis**

**Installed lighting inventory, wattage, and operating hours** per DOE U.S. Lighting Market Characterization

**LED adoption and efficacy improvement** according to DOE Energy Savings Forecast


Continued levels of utility and industry promotion of LED achieve adoption levels of 83% (indoor) and 90% (outdoor) by 2035

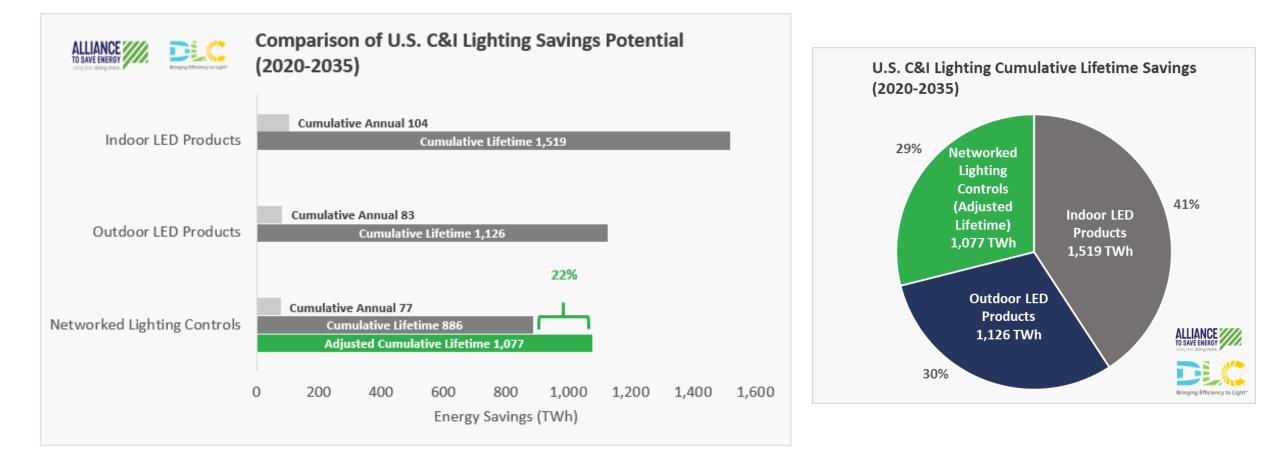
Utilities and industry aggressively promote NLC to achieve adoption levels of 58% (indoor) and 65% (outdoor) by 2035

Measure lifetimes identified during the TRM research



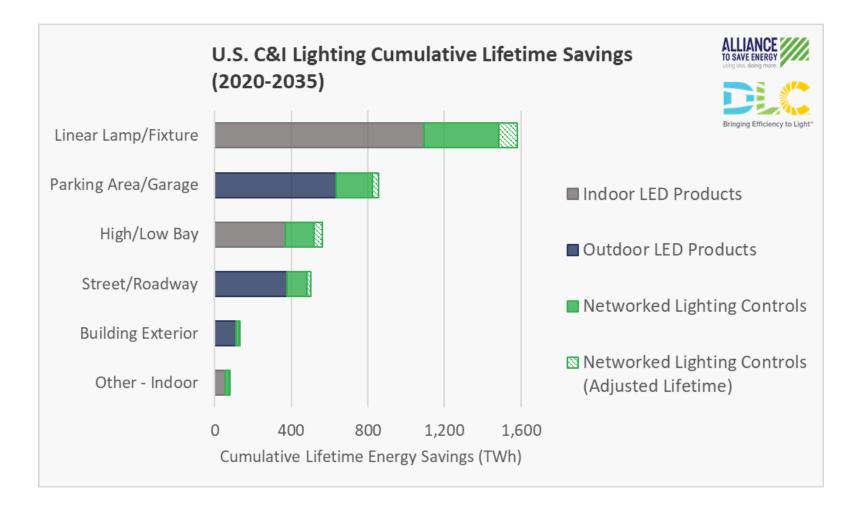
## **Lifetime Savings Estimate**






# **Adjusted NLC Measure Lifetime**

| Product Type                  | LED TRM<br>Measure Life                                                                           | NLC TRM<br>Measure Life                                                                                                                                                | Adjusted NLC<br>TRM Measure<br>Life                                                                                                                                               |  |  |  |  |
|-------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| High/Low Bay                  | 14.8                                                                                              | <del>11.5</del>                                                                                                                                                        | 14.8                                                                                                                                                                              |  |  |  |  |
| Linear Lamp/Fixture           | 14.5                                                                                              | <del>11.5</del>                                                                                                                                                        | 14.5                                                                                                                                                                              |  |  |  |  |
| <b>Building Exterior</b>      | 13.5                                                                                              | <del>11.5</del>                                                                                                                                                        | 13.5                                                                                                                                                                              |  |  |  |  |
| Street/Roadway                | 13.5                                                                                              | <del>11.5</del>                                                                                                                                                        | 13.5                                                                                                                                                                              |  |  |  |  |
| Parking Area/Garage           | 13.5                                                                                              | <del>11.5</del>                                                                                                                                                        | 13.5                                                                                                                                                                              |  |  |  |  |
| LED Fixture Assumed Lifetime  |                                                                                                   |                                                                                                                                                                        |                                                                                                                                                                                   |  |  |  |  |
| Adjusted NLC Assumed Lifetime |                                                                                                   |                                                                                                                                                                        |                                                                                                                                                                                   |  |  |  |  |
|                               | High/Low Bay<br>Linear Lamp/Fixture<br>Building Exterior<br>Street/Roadway<br>Parking Area/Garage | Product TypeMeasure LifeHigh/Low Bay14.8Linear Lamp/Fixture14.5Building Exterior13.5Street/Roadway13.5Parking Area/Garage13.5Jure Assumed LifetimeNLC Assumed Lifetime | Product TypeMeasure LifeMeasure LifeHigh/Low Bay14.811.5Linear Lamp/Fixture14.511.5Building Exterior13.511.5Street/Roadway13.511.5Parking Area/Garage13.511.5NLC Assumed Lifetime |  |  |  |  |


- LEDs and NLCs are dependent on each other to achieve the full savings potential
- NLCs and LED fixtures increasingly operate as a system, and in some cases are inseparable

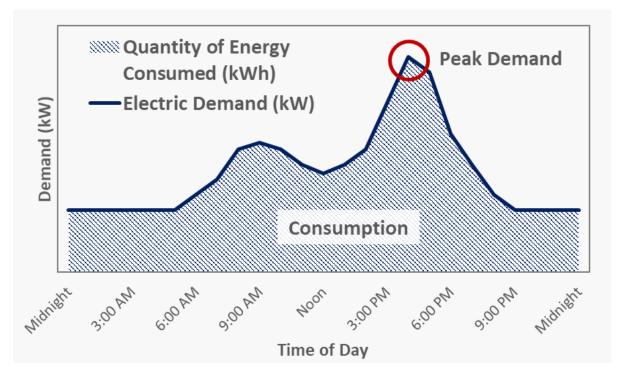
# Lifetime Savings Estimate with Adjusted NLC Life





## Lifetime Savings Estimate by Product Type






# **Peak Demand Savings**



# **Peak Demand Definition**

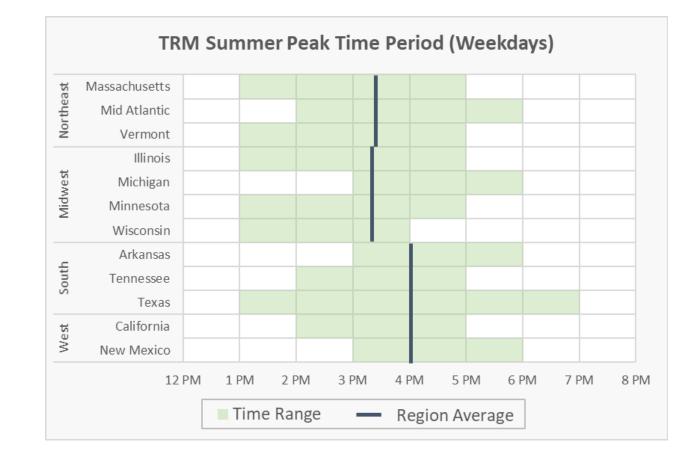
- Electricity consumption represents the power used over time (kWh)
- **Electricity demand** represents the instantaneous power required to meet the electrical loads of the utility (kW)
- **Peak demand** represents the highest electric power demand over a time period (month, year, summer, etc.)





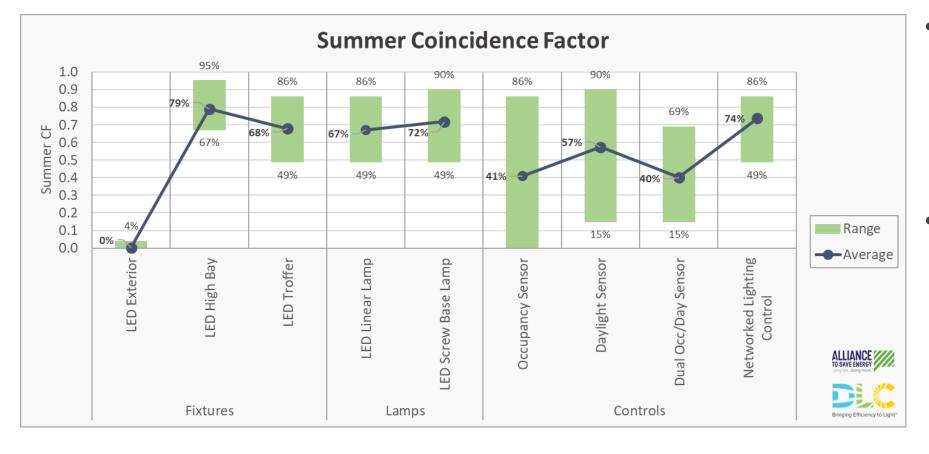
# **Peak Demand Reduction Through Energy Efficiency**

- Savings from an energy efficiency measure may not always overlap with the time of a system peak
- Overlap with a peak demand timeframe is called *coincidence*
- Coincidence factors are used to estimate the impact that a measure has on peak demand for the associated season


| Example Coincidence Factors | Summer<br>(Weekdays 1-5pm) | Winter<br>(Weekdays 5-7pm) |  |  |
|-----------------------------|----------------------------|----------------------------|--|--|
| Residential Indoor Lighting | 55%                        | 85%                        |  |  |
| Commercial Indoor Lighting  | 83%                        | 65%                        |  |  |
| Commercial Outdoor Lighting | 0%                         | 100%                       |  |  |
| Industrial (24/7) Lighting  | 100%                       | 100%                       |  |  |

Example Summer Peak Lighting Coincidence Factors from Massachusetts TRM

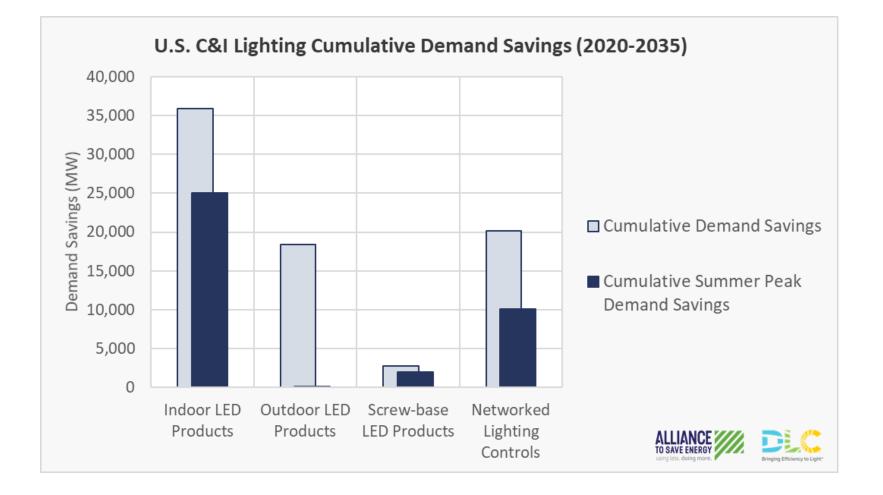



# **Peak Demand Savings Analysis**

- Summer peak was selected since most utilities face a greater capacity constraint during the summer months
- Most TRMs reviewed define summer peak time period as late afternoon weekdays June to August



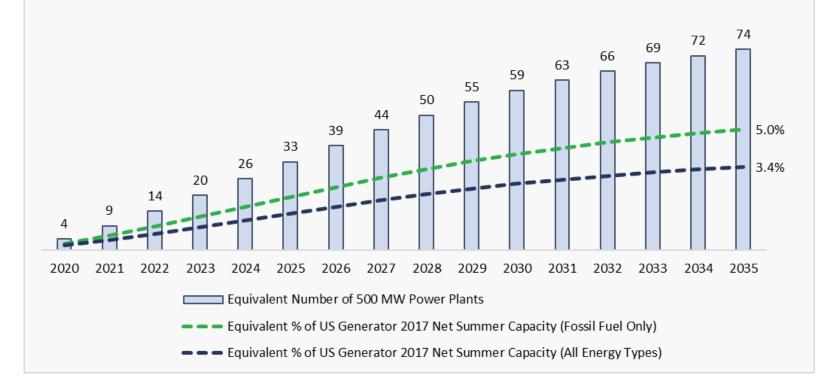



### **TRM Summer Coincidence Factor**



- Significant variation among lighting control coincidence factors
- The same lighting control measure will have drastically different assumed peak demand savings




# **C&I Lighting Summer Peak Demand Savings Potential**



In the context of summer peak, indoor LED lighting and networked lighting controls are far and away the most important commercial lighting measures

# **C&I Lighting Peak Demand Savings Potential**

U.S. C&I Lighting Cumulative Summer Peak Demand Savings (2020-2035)



• By 2035, the potential summer peak demand impact from indoor LED and networked lighting control is roughly equal to 5% of the generating capacity of the entire fleet of U.S fossil fuel power plants\*



ALLIANCE TO SAVE ENERGY

\* 2017 net summer fossil fuel power plant capacity totaled 745,866 MW according to the Energy Information Administration (<u>https://www.eia.gov/electricity/annual/html/epa\_04\_03.html</u>)

# **Cost Effectiveness**



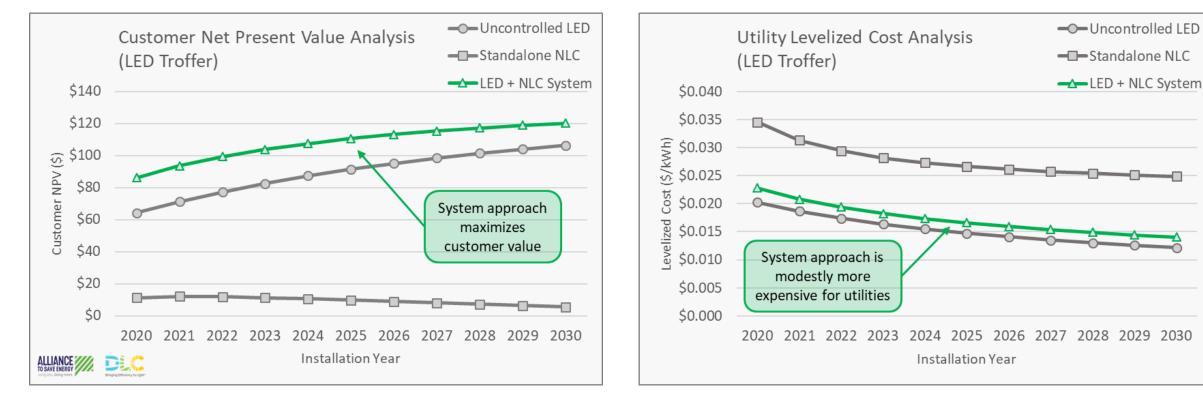
# **Cost Effectiveness Analysis**

#### **Cost-Effectiveness Measure**

- Customer simple payback (years)
- Customer net present value -NPV (\$)
- Customer internal rate of return IRR (%)
- EE program rebate cost (\$/kWh)
- EE program lifetime rebate cost (\$/lifetime kWh)
- EE program levelized cost of energy (\$)

#### **Scenarios Considered**

- Four LED product types (troffer, highbay, exterior small, and exterior larger)
- LED measures alone using TRM lifetime
- NLC measures alone using TRM lifetime
- LED + NLC system measures using adjusted TRM lifetime


#### Key Inputs

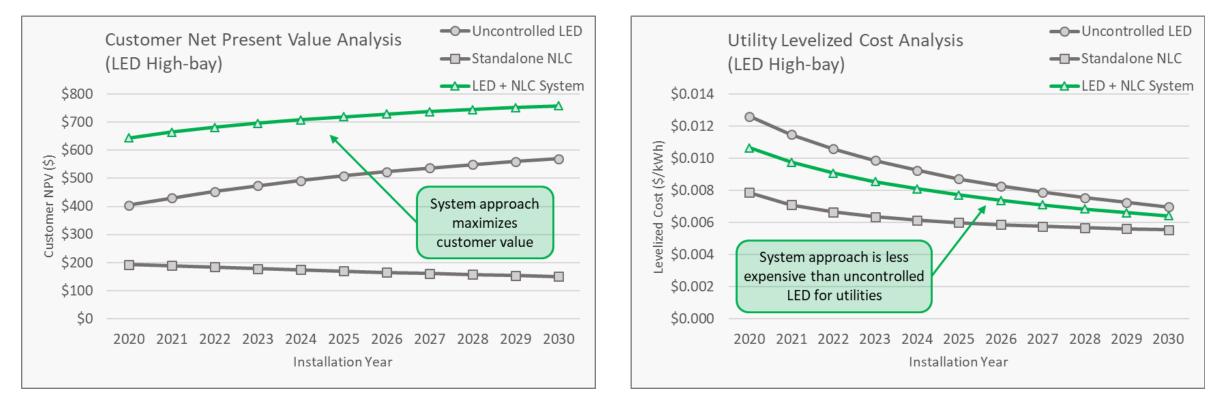
- Measure characterization (watts, hours)
- Annual savings
- Measure lifetime
- Current and future measure costs
- Utility incentive
- Electric rate
- Inflation
- Discount rate



# **Cost Effectiveness Scenario for LED Troffer**

#### **Customer Economics (NPV):**




Default input assumptions include electric rate (\$0.105/kWh), annual operating hours (3375), baseline power (67.5 watts), LED power (33.5 watts), average annual efficacy change (2.7%), 2019 LED cost (\$92), LED average annual cost change (-3.4%), LED utility incentive (30%), LED and NLC measure life (per TRM research), LED installation time (20 minutes), NLC type (luminaire integrated), NLC savings (47%), 2019 NLC cost (\$50), NLC average annual cost change (-7.0%), NLC utility incentive (40%), NLC installation time (15 minutes), inflation (2.0%), discount rate (5.0%), labor rate (\$75/hour).



#### **Utility Incentive Economics (levelized cost):**

# **Cost Effectiveness Scenario for LED Higbay**

#### **Customer Economics (NPV):**



**Utility Incentive Economics (levelized cost):** 

Default input assumptions include electric rate (\$0.105/kWh), annual operating hours (3834), baseline power (246.6 watts), LED power (128.7 watts), average annual efficacy change (2.7%), 2019 LED cost (\$229), LED average annual cost change (-3.4%), LED utility incentive (30%), LED and NLC measure life (per TRM research), LED installation time (30 minutes), NLC type (luminaire integrated), NLC savings (47%), 2019 NLC cost (\$50), NLC average annual cost change (-7.0%), NLC utility incentive (40%), NLC installation time (15 minutes), inflation (2.0%), discount rate (5.0%), labor rate (\$75/hour).









#### TRM Measure Assumptions

- Many EE programs are underestimating benefits by using overly conservative assumptions for lighting control measure life and savings potential.
- Lost opportunity for significant energy savings can be avoided when networked lighting is combined with lighting projects in savings assumptions.



#### Lifetime Savings

- Focusing on annual (first-year) savings grossly underrepresents the true savings potential over the life of the measure.
- Annual (first-year) savings goals inadvertently encourage the promotion of short-lived measures.



#### System Approach

- Treating LED+NLC as a system can improve cost-effectiveness since the NLC lifetime savings increase by 22%.
- Combining LED+NLC encourages integration with other building systems (e.g. HVAC).
- EE programs treat NLC as an independent measure from LED, with shorter lifetime measures.



#### Peak Demand Reduction

- The potential peak demand savings from indoor LED combined with networked lighting controls is significant, since coincidence with summer peak is high in most areas.
- Summer peak savings could equal 5% of today's fossil fuel capacity by 2035.



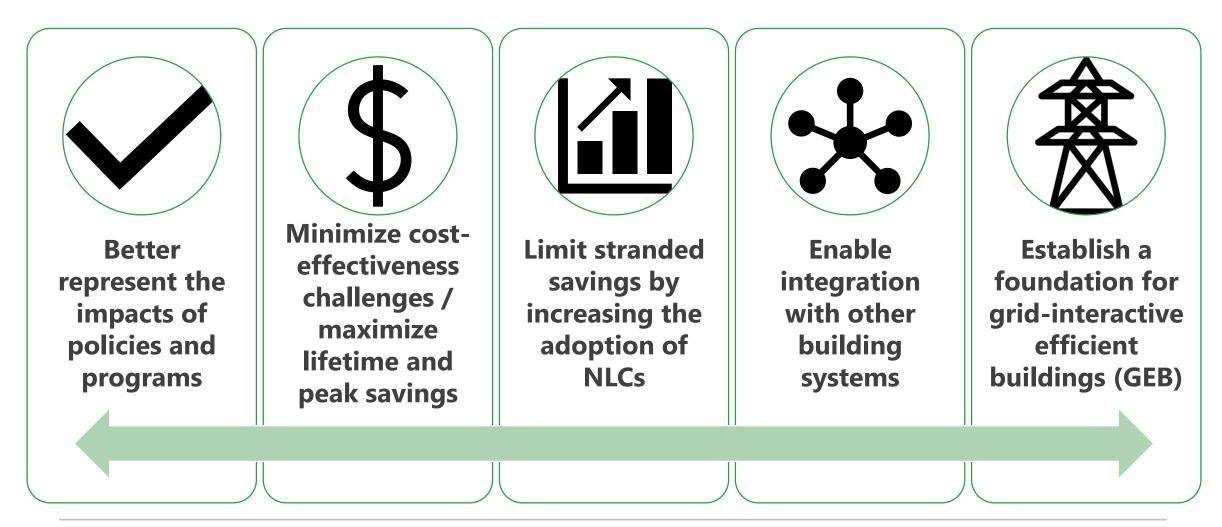


### **Research Recommendations**

#### Lifetime Savings

• EE programs, regulators, and policy makers should increase focus on lifetime savings.

#### NLC Emphasis


- A measure characterization for **networked lighting controls is needed within all TRMs**.
- The measure lifetime for networked lighting control measures should be consistent with LED fixtures.

#### LED + NLC Systems Approach

- Networked lighting controls should be characterized as an LED + NLC system measure within TRMs.
- EE programs should evaluate program design opportunities and incentive strategies that promote LED lighting and networked lighting controls as a system.



### **Desired Outcomes**









### **C&I Lighting Lifetime and Peak Demand Savings Analysis**

ASE Contact: Rick Tempchin, <u>rtempchin@ase.org</u> DLC Contact: Christina Halfpenny, <u>chalfpenny@designlights.org</u> EFG Contact: Dan Mellinger, <u>dmellinger@energyfuturesgroup.com</u>