What is worst-case?

Andrew Baltimore
DLC Support Team
Overview

- Understand what “worst-case” means
- Understand the importance of worst-case
- Recognize which product variables affect performance
- Learn what the DLC expects to be worst-case
- Goal: Understand the DLC’s worst-case expectations to decrease processing time
What is worst-case?

- The meaning of worst-case
 - Worst-case = worst performing
 - Worst-case conditions for a particular metric (e.g., light output)
 - Ex: Under which conditions would your product produce the fewest lumens?

- The importance of worst-case information
 - For all applications, the DLC is most concerned with worst-case performance of a product in the field, and how that would compare to the DLC’s minimum performance requirements
Accepted Product Variations

Single Product Application

- Correlated Color Temperature (CCT)
 - e.g., 3000K, 4000K, and 5000K
- Voltages
 - Same driver that operates at two voltage ranges
- Dimming options
- Non-performance affecting variations
 - e.g., housing color

Family Grouping Application

- CCT
- Multiple wattages
- Housing size (volume)
- Dimming options
- Number of LEDs
- Voltages
- Driver current
 - Note: drivers with programmable currents (e.g., 350mA, 530mA, and 700mA) not separate drivers
Which variables affect your single product application?

- **Correlated Color Temperature (CCT)**
 - Warmer color (lower CCT) \rightarrow hotter \rightarrow less efficient

- **Input voltage**
 - Universal voltage drivers (120V - 277V)
 - Operating at 120V \rightarrow worst-case efficiency? \rightarrow worst-case efficacy
 - Operating at 277V \rightarrow worst-case THDi? worst-case power factor?
 - High voltage drivers (347V - 480V)
 - May not be able to apply universal driver logic here

- Understand your products; justify worst-case
Worst-Case: Family Grouping

Worst-Case Light Output

- Product variables that affect light output
Worst-Case: Family Grouping

Worst-Case Light Output

- Product variables that affect light output
 - Number of LEDs (lower quantity is worse)
 - Drive current (lower is worse)
Worst-Case: Family Grouping

Worst-Case Light Output

- Product variables that affect light output
 - Number of LEDs (lower quantity is worse)
 - Drive current (lower is worse)
 - CCT (lower is worse)
 - Optical efficiencies (which is least efficient?)
Worst-Case: Family Grouping

Worst-Case Light Output

- Product variables that affect light output
 - Number of LEDs (lower quantity is worse)
 - Drive current (lower is worse)
 - CCT (lower is worse)
 - Optical efficiencies (which is least efficient?)
 - Color Rendering Index (CRI) (higher is worse)
 - Thermal conditions (hotter is worse)
Worst-Case: Family Grouping

Worst-Case Efficacy

- Product variables that affect efficacy
 - CCT (lower is worse)
 - Thermal conditions (hotter is worse)
 - Optical efficiencies (which is least efficient?)
 - Drive current (higher is worse)
 - Loading conditions (lower is worse)
 - CRI (higher is worse)
Worst-Case: Family Grouping

Worst-Case Thermal Environment

- Product variables that affect the thermal environment
 - Number of LEDs (higher quantity is worse)
 - Housing size (smaller is worse)
 - Drive current (higher is worse)
 - CCT (lower is worse)
 - CRI (higher is worse)
 - Optical efficiencies (which is least efficient?)
 - Proximity of other heat sources? (e.g., driver)

- Understand your products; justify worst-case
Some Worst-Case Exceptions

- **Dimmable Products**
 - We are aware that dimming negatively affects performance
 - DLC will monitor progress toward standard methodology and will consider performance reporting or requirements in the future

- **Ambient Air Temperature**
 - Currently no testing requirements for products tested at higher ambient air temperatures (e.g., 40°C)
 - May be something the DLC will look at in the future
Worst-Case Example: Single Product

- A manufacturer submits models AB-20-3000K, AB-20-4000K, and AB-20-5000K under category X, using a universal driver
 - Provides full LM-79 test report for AB-20-3000K at 120V
 - Provides color data (section 12 of LM79) for AB-20-5000K at 120V
 - Provides electrical data (PF and THDi) at only 120V for AB-20-3000K
 - Product meets requirements, but will be qualified at 120V ONLY!

- Why the limitation?
 - Didn’t provide justification for only testing PF and THDi at 120V
 - To remove the “120V ONLY” limitation, the manufacturer needs to conduct additional PF/THDi testing at 277V → delays processing time!
A manufacturer submits family ABC-HHH-DDD-KK-OO under category X.

Family contains:

- ABC = Product Family Line
- HHH = 3 housing sizes (SML=Small, MED=Medium, LRG=Large) with varying # of LEDs
- DDD = 3 driver currents (35=350mA, 53=530mA, and 70=700mA)
- KK = 3 CCTs (30=3000K, 40=4000K, and 50=5000K)
- OO = 3 optical variations (T2=Type 2, T3=Type 3, and T4=Type 4)
Through various methods, the manufacturer determined the Type 2 optic to be least efficient - meaning it is the hottest, least efficacious, and lowest lumen output optic.

- “Various methods” include, but are not limited to:
 - Measured values from an Accredited Laboratory
 - In-house testing facilities

Knowing this information, the manufacturer completes the scaled performance table while providing scaling methodology and justification.

Understand your products; justify worst-case.
Knowing Type 2 is the least efficient optic, the manufacturer can conclude:

- Model ABC-SML-350-30-T2 will be the worst-case light output member
- Model ABC-SML-700-30-T2 will also be the worst-case efficacy model, knowing that it is the hottest optic and produces the fewest lumens
- Model ABC-LRG-700-30-T2 will be the worst-case thermal member, as it has the most LEDs, highest drive current, lowest CCT, and the least efficient, Type 2 optic

Manufacturer determined the correct worst-case models and provided the appropriate test reports for each
What the manufacturer did right!

- The manufacturer recognized all of the performance-affecting variables in the family
- It isolated the variables with the biggest effects and determined which models were “worst-case”
- It conducted the appropriate tests on its selected worst-case models
- It provided technical rationale to the DLC reviewer
- The manufacturer decreased DLC processing time by understanding its products’ performance and providing justification
Worst-Case: Key Points

- Important performance metrics:
 - Worst-Case Light Output
 - Worst-Case Efficacy
 - Worst-Case Thermal Environment

- Recognizing worst-case will decrease processing time

- Understand your products; justify worst-case

- The DLC always reserves the right to ask for more information or justification about how worst-case was determined
Thank You!

Andrew Baltimore
301.588.9387
info@designlights.org